第三百七十三章 碳基芯片問世

說實在的,哪怕是到了今日,秦元清扶持華芯科技,可是在涉及集成電路高端制造領域,華夏與西方國家依舊有著不小的差距。

別的不說,單單阿斯麥公司的極紫外光刻機(EUV),匯聚了所有西方國家最頂尖的制造技術,堪稱人類有史以來最緊密的工業品。

與航空發動機一起,成為工業制造皇冠上的一顆明珠。

秦元清也不得不承認,在矽基集成電路時代,西方國家有著巨大的先發優勢,華夏很難在這一領域與西方國家展開競爭。

這也是為什麽,華夏率先掌握5G技術,然後世界就轟動了,實在是3G時代的紅利還沒有吃完,4G時代的紅利才剛剛開始吃,都還沒有吃飽,結果你華威掌握5G技術,這不是砸人家飯碗麽。

更可惡的是,5G技術一突破,華夏已經在建設5G基站,這速度實在是太快了。

所以才鬧得沸沸揚揚。

秦元清承認,矽基芯片制程上的差距,讓華夏很難在短時間內追上西方發達國家,哪怕追上了也稱不上彎道超車。但矽基領域沒辦法彎道超車,並不意味著沒有另辟蹊徑的辦法。

碳納米管被科學家們寄予了厚望!

這與其本身的特性息息相關。首先,碳納米管芯片身量雖小,但節能增效能力卻更加強大,碳納米管是由單層碳原子卷成管狀的碳材料,導電性能極好,而且碳元素在地球上的儲量十分豐富。

碳納米管的直徑可以根據工藝的不同制成幾納米到幾十納米長;管壁厚度更小,根據壁層碳原子數量不同,碳納米管可以分為單壁碳納米管和多壁碳納米管;在同樣集成度的情況下,碳納米管芯片比矽元器件體積更小。

同時,碳納米管的韌性極高,可以承受彎曲、拉伸等應力,電信號傳輸過程的延遲很短,所以,從材料物理屬性上看,碳納米管具有替代矽芯片的潛力。

其次,碳材料具有多種同素異形體,除了碳納米管以外,還有人們熟知的金剛石、石墨、富勒烯、活性炭等等。

其導電性質強烈地依賴於結構,可以由絕緣體轉變為半導體、由半導體變為導體。而且,它的導電方式和原理與傳統的晶體管不一樣,有更強的傳導能力。

另外,現有的晶體管在導電過程中無可避免地會產生漏電流,漏電會導致發熱,而碳納米管可以避免這一問題,故而能效相對較高。

從理論上講,碳納米管芯片的能量利用率有望超過現有芯片的能效比(60%至70%)。

發熱問題的解決也給芯片的散熱降低了壓力,矽晶體管的功耗很大,在小小的芯片空間內,發熱極其嚴重,為了不使芯片過熱無法工作,還需要分配部分的功耗用於芯片的散熱,這使得矽晶體管功耗增大。

而碳納米管芯片本身產熱就少,加上碳納米管本身的熱導率很高,有效地減少了用於散熱的能耗,所以碳納米管的能效會遠遠高於以矽為材料的晶體管。

世界範圍內,最早實現碳納米管器件制備的是IBM,其在2014年成功制備出碳納米管20nm柵長器件,不過,該器件性能比預期差很多。

近年來,也有國外的各類實驗室號稱制備出1nm柵長的碳納米管器件,但更多的只是噱頭,實際使用性能很差。

秦元清選中了碳基芯片這個方向後,開始帶領碳納米管器件的研究,然後一大批研究人員就體會到,有大佬親自帶路的便捷性和速度,研發快得一塌糊塗,一遇到瓶頸和難點,就有秦元清親自上馬解決,短短時間內就完成超高純度電子級碳納米管量產制備,隨後團隊便開始在高性能碳納米管(CMOS互補金屬氧化物半導體)晶體管的無摻雜制備、晶體管的極性控制方面進行深入研究。

“秦院士,好消息!”這一天,秦元清正在投入算法的工作中,潘教授喜氣洋洋的過來說道。

“哦?潘教授,有什麽好消息?”秦元清好奇地問道。

“成功了!碳基芯片成功了!”潘教授興奮地差點都要跳起來,已經快48歲的潘教授,在這一刻一點也不顯得穩重。

他完全沒有想到,秦元清才來了不到一個月,碳基芯片竟然就研發成功了,這簡直是太不可思議,太鼓舞人心了!

有了碳基芯片,潘教授完全有把握,讓量子計算機達到2個比特,大大提高量子計算機的運行速度。

“在哪裏?”秦元清也頗為意外,他還想著,這碳基芯片估計得到明年才能問世,甚至是到後年問世都正常,結果沒想到現在就問世了,這簡直是他暫時離開前最好的消息。

“走,就在實驗室,大家都興奮壞了!”潘教授說道,然後在前面帶路,秦元清跟上。

來到了不遠處的實驗室,就看到郭院士如同一個孩子一般,在那邊又跳又叫著,眼中都是飽含淚水,其他人也好不到哪裏去。